7,994 research outputs found

    Evidence that the plasma sheet is the source of auroral electrons

    Get PDF
    Plasma sheet origins of auroral zone electron

    Field Work Reflections: Journeys in Knowing and Not-Knowing

    Get PDF
    In this paper, I retrace my interest in narrative forms of inquiry. I begin by revisiting a series of research projects that I conducted early in my career, describing some of my own dissatisfactions with the methods I used at the time. I move on to a detailed reexamination of my first piece of narrative research, completed during my PhD. In that project I used a narrative pointed psychosocial method in an attempt to develop new knowledge in the field of drugs, ‘race’ and ethnicity. In the final section, I consider what I have learned from this approach in terms of knowing and not-knowing and how I have used this experience to explore different approaches to narrative inquiry. I finish by drawing out some lessons I have learned from these different studies, which I hope might be of relevance to other social work researchers

    Spontaneous Iliopsoas Hematoma following Microvascular Free Tissue Transfer.

    Get PDF
    Spontaneous hematoma within the iliopsoas muscle (SIH) is a rare complication most commonly seen in coagulopathic patients. Often, patients undergoing microvascular free tissue transfer are anticoagulated for anastomotic patency. Here we describe two cases of postoperative SIH following contralateral anterolateral thigh (ALT) free tissue transfer for reconstruction of oncologic head and neck defects. Both patients described hip pain after mobilization and had a corresponding acute blood loss anemia. Diagnosis of SIH was confirmed by CT and both patients were managed conservatively. Given that anticoagulation is a common practice following head and neck free tissue transfer, surgeons should be aware of this potential complication

    Reconsidering data in learning analytics: opportunities for critical research using a documentation studies framework

    Get PDF
    In this article, we argue that the contributions of documentation studies can provide a useful framework for analyzing the datafication of students due to emerging learning analytics (LA) practices. Specifically, the concepts of individuals being ‘made into’ data and how that data is ‘considered as’ can help to frame vital questions concerning the use of student data in LA. More specifically, approaches informed by documentation studies will enable researchers to address the sociotechnical processes underlying how students are constructed into data, and ways data about students are considered and understood. We draw on these concepts to identify and describe three areas for future research in LA. With the description of each area, we provide a brief analysis of current practices in American higher education, highlighting how documentation studies enables deeper analytical digging

    Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres

    Full text link
    We calculate detailed chemical abundance profiles for a variety of brown dwarf and extrasolar giant planet atmosphere models, focusing in particular on Gliese 229B, and derive the systematics of the changes in the dominant reservoirs of the major elements with altitude and temperature. We assume an Anders and Grevesse (1989) solar composition of 27 chemical elements and track 330 gas--phase species, including the monatomic forms of the elements, as well as about 120 condensates. We address the issue of the formation and composition of clouds in the cool atmospheres of substellar objects and explore the rain out and depletion of refractories. We conclude that the opacity of clouds of low--temperature (≤\le900 K), small--radius condensibles (specific chlorides and sulfides), may be responsible for the steep spectrum of Gliese 229B observed in the near infrared below 1 \mic. Furthermore, we assemble a temperature sequence of chemical transitions in substellar atmospheres that may be used to anchor and define a sequence of spectral types for substellar objects with Teff_{eff}s from ∼\sim2200 K to ∼\sim100 K.Comment: 57 pages total, LaTeX, 14 figures, 5 tables, also available in uuencoded, gzipped, and tarred form via anonymous ftp at www.astrophysics.arizona.edu (cd to pub/burrows/chem), submitted to Ap.

    Statistical properties of determinantal point processes in high-dimensional Euclidean spaces

    Full text link
    The goal of this paper is to quantitatively describe some statistical properties of higher-dimensional determinantal point processes with a primary focus on the nearest-neighbor distribution functions. Toward this end, we express these functions as determinants of N×NN\times N matrices and then extrapolate to N→∞N\to\infty. This formulation allows for a quick and accurate numerical evaluation of these quantities for point processes in Euclidean spaces of dimension dd. We also implement an algorithm due to Hough \emph{et. al.} \cite{hough2006dpa} for generating configurations of determinantal point processes in arbitrary Euclidean spaces, and we utilize this algorithm in conjunction with the aforementioned numerical results to characterize the statistical properties of what we call the Fermi-sphere point process for d=1d = 1 to 4. This homogeneous, isotropic determinantal point process, discussed also in a companion paper \cite{ToScZa08}, is the high-dimensional generalization of the distribution of eigenvalues on the unit circle of a random matrix from the circular unitary ensemble (CUE). In addition to the nearest-neighbor probability distribution, we are able to calculate Voronoi cells and nearest-neighbor extrema statistics for the Fermi-sphere point process and discuss these as the dimension dd is varied. The results in this paper accompany and complement analytical properties of higher-dimensional determinantal point processes developed in \cite{ToScZa08}.Comment: 42 pages, 17 figure

    Lunar particle shadows and boundary layer experiment: Plasma and energetic particles on the Apollo 15 and 16 subsatellites

    Get PDF
    The lunar particle shadows and boundary layer experiments aboard the Apollo 15 and 16 subsatellites and scientific reduction and analysis of the data to date are discussed with emphasis on four major topics: solar particles; interplanetry particle phenomena; lunar interactions; and topology and dynamics of the magnetosphere at lunar orbit. The studies of solar and interplanetary particles concentrated on the low energy region which was essentially unexplored, and the studies of lunar interaction pointed up the transition from single particle to plasma characteristics. The analysis concentrated on the electron angular distributions as highly sensitive indicators of localized magnetization of the lunar surface. Magnetosphere experiments provided the first electric field measurements in the distant magnetotail, as well as comprehensive low energy particle measurements at lunar distance

    Oyster (Crassostrea Virginica [Gmelin, 1791]) Mortality At Prolonged Exposures To High Temperature And Low Salinity

    Get PDF
    Mortality of two size classes (35 mm) of eastern oysters Crassostrea virginica when exposed to combinations of low salinity (1, 2, 3, and 4) for extended periods (up to 30 days) at summer water temperatures typical of the Virginia Chesapeake Bay subestuaries was examined. A critical salinity-temperature combination of less than two at greater than 28 degrees C for more than 1 wk exposure for oyster mortality is suggested. A review of limited historical salinity-temperature tolerance data suggest selection of local populations of oysters having differing salinity tolerances. Such selection may prove critical to persistence of low-salinity populations in the Chesapeake Bay subestuaries with projected climate change
    • …
    corecore